A note on maximum differential coloring of planar graphs
نویسندگان
چکیده
We study the maximum differential coloring problem, where the vertices of an n-vertex graph must be labeled with distinct numbers ranging from 1 to n, so that the minimum absolute difference between two labels of any two adjacent vertices is maximized. As the problem is NP-hard for general graphs [16], we consider planar graphs and subclasses thereof. We prove that the maximum differential coloring problem remains NP-hard, even for planar graphs. We also present tight bounds for regular caterpillars and spider graphs. Using these new bounds, we prove that the Miller-Pritikin labeling scheme [19] for forests is optimal for regular caterpillars and for spider graphs.
منابع مشابه
A note on the NP-completeness of the precoloring extension coloring problem in triangle free planar graphs
The precoloring extension coloring problem consists in deciding, given a positive integer k, a graph G = (V,E) and k pairwise disjoint subsets V0, . . . , Vk−1 of V , if there exists a (vertex) coloring S = (S0, . . . , Sk−1) of G such that Vi ⊆ Si, for all i = 0, . . . , k − 1. In this note, we show that the precoloring extension coloring problem is NP-complete in triangle free planar graphs w...
متن کاملHow To Color A Map
We study the maximum differential coloring problem, where an n-vertex graph must be colored with colors numbered 1, 2...n such that the minimal difference between the two colors of any edge is maximized. This problem is motivated by coloring maps in which not all countries are contiguous. Since it is known that this problem is NP-hard for general graphs; we consider planar graphs and subclasses...
متن کاملThe hardness of the functional orientation 2-color problem
We consider the Functional Orientation 2-Color problem, which was introduced by Valiant in his seminal paper on holographic algorithms [SIAM J. Comput., 37(5), 2008]. For this decision problem, Valiant gave a polynomial time holographic algorithm for planar graphs of maximum degree 3, and showed that the problem is NP-complete for planar graphs of maximum degree 10. A recent result on defective...
متن کاملA NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS
The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.
متن کاملHard coloring problems in low degree planar bipartite graphs
In this paper we prove that the PRECOLORING EXTENSION problem on graphs of maximum degree 3 is polynomially solvable, but even its restricted version with 3 colors is NP-complete on planar bipartite graphs of maximum degree 4. The restricted version of LIST COLORING, in which the union of all lists consists of 3 colors, is shown to be NP-complete on planar 3-regular bipartite graphs. © 2006 Els...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Discrete Algorithms
دوره 29 شماره
صفحات -
تاریخ انتشار 2014